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Why Open Box?

How Offline Click Prediction Training Works?

How do we optimize Marketplace?

Future Work

• Requires measuring KPI Impact of any modification to the System.

• Need a counterfactual estimation system to answer “What If Questions?”

Experimental Results
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Method Basic Idea Pros Cons

A/B Testing - Run Two online 

experiment.

- Deploy modification to real 

traffic run as treatment.

- Compare with control 

traffic.

- Accurate

- Can Measure many 

type of modification

- E2E Deployment

- Risk in Real Traffic

- Limited Parameter 

Space and policy 

Combinations.

Observational - Run an online randomized 

experiment

- Collect randomized data

- Run Offline Training to 

generate new model or 

activate policy. 

- Large Parameter 

Space.

- Quick updates and 

efficiency.

- E2E Deployment.

- Real Traffic for 

randomized 

experiment.

- Cold Start problem. 

Existing Approaches

Idea of Open Box Simulation
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• Get rid of the negative impact of historical policy interactions. (Bing Ads PC is running more than

200 experiment simultaneously)

• Provides using higher volume of historical data. One sampling point could represent multiple

settings/policies

• No Randomization cost and minimize the risk for Real Experiment.

• Good solution for cold start problem

• Can be leveraged when randomized experiment or A/B Testing is not appropriate.

• Bid vs Traffic/Click Estimation Recommendation.
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• Goal: Learn Click Model to calibrate PClick scores in

replay/counterfactual page allocations.

• Inputs: (Impression Vector, click) pairs.

• Outputs: Trained model on Cosmos

• The PClick Score here is special one that is used for Offline

metric Computation!

• Genie currently supports two models:

o Bayesian Probit (Full Support). Around %95 of

scenarios.

o GTB: (Evaluation Only in Genie. Training is outside

the Genie)
Bayesian Probit
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Gaussian Beliefs for Model Weights

Sampling

Distribution

Prior for a

given w:

Φ is standard cumulative distribution function and β is 

constant and controls steepness of the curve. Y can be 

either {-1 (no click), +1 (click)} in this context.

Approximate P(w|x,y) with factor graphs as it does 

not have closed form solution [1].

Define a new latent variables s

and t where s is a linear

combination of weights and t is

the sign of s after adding

gaussian noise.

• Training Algorithm

o For each Impression data point.

➢ Find matched bins for each feature

➢ Compute the total variance and mean using

gaussian of matched bins:

➢ For each matched bin:

• Update the mean and variance.

• w and v are dynamic learning rate functions.

• Evaluation:

• Total mean and variance are computed for new data x (*)

• The cumulative distribution on total mean over square root

of variance:

Bayesian 

Inference:

(*)

P(y|x) = 

We’re interested 

in PClick values

In this context

Generalized linear model with standard CDF as a probit function [2].

Each feature from ad impression is mapped to weights in 

predefined bin array.

How Offline Simulation Works?
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• Each counterfactual is converted into Modifier and

Restorers.

• Modifiers modifies the simulation input in place and

returns a restorer.

• Restorer restores the input to the original value.

• Each Inner loop do the following:

o Modify Input

o Call Online Library

o Calibrate Page Assignment

o Compute KPI

o Add (request, setting id) level KPI to result pool.

o Restore Inputs.

• Bing PC Experiment on 5 consecutive tuning time

period during April to May 2018

• Each cell corresponds to KPI delta compared to

A/B testing.

• Regression corresponds to metrics obtained from

logs that has same date range with A/B testing.

Challenges and Lessons Learned
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• Genie Explorer: Running large number of candidate grid points in Genie is very costly. While completely data driven

approach like Importance Sampling supports up to evaluation of 300K Grid points, Genie can only support up to 10K Grid

points within 10-12 hours. Genie Explorer will focus on fixing this problem.

• Grid Exploration performance is poor for extrapolation, Bayesian Optimization could be used with single box simulator to

explore points outside the bounding box of initial grid.
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