
Genie: An Open Box Counterfactual Policy Estimator for
Optimizing Sponsored Search Marketplace
Murat Ali Bayir∗
Microsoft Bing Ads
Redmond, WA, USA

mbayir@microsoft.com

Mingsen Xu
Microsoft Bing Ads
Redmond, WA, USA

mingx@microsoft.com

Yaojia Zhu
Microsoft Bing Ads
Redmond, WA, USA

yaozhu@microsoft.com

Yifan Shi
Microsoft Bing Ads
Redmond, WA, USA

yifanshi@microsoft.com

ABSTRACT
In this paper, we propose an offline counterfactual policy estimation
framework called Genie to optimize Sponsored Search Marketplace.
Genie employs an open box simulation engine with click calibra-
tion model to compute the KPI impact of any modification to the
system. From the experimental results on Bing traffic, we showed
that Genie performs better than existing observational approaches
that employs randomized experiments for traffic slices that have
frequent policy updates. We also show that Genie can be used to
tune completely new policies efficiently without creating risky ran-
domized experiments due to cold start problem. As time of today,
Genie hosts more than 10000 optimization jobs yearly which runs
more than 30 Million processing node hours of big data jobs for
Bing Ads. For the last 3 years, Genie has been proven to be the one
of the major platforms to optimize Bing Ads Marketplace due to
its reliability under frequent policy changes and its efficiency to
minimize risks in real experiments.

CCS CONCEPTS
• Information systems → Sponsored search advertising; •
Computing methodologies → Machine learning; Modeling and
simulation;

KEYWORDS
Sponsored Search, Counterfactual Policy Estimation, Causal Infer-
ence

ACM Reference Format:
Murat Ali Bayir, Mingsen Xu, Yaojia Zhu, and Yifan Shi. 2019. Genie: An
Open Box Counterfactual Policy Estimator for Optimizing Sponsored Search
Marketplace. In The Twelfth ACM International Conference onWeb Search and
Data Mining (WSDM ’19), February 11–15, 2019, Melbourne, VIC, Australia.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3289600.3290969

∗Corresponding author.

WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290969

MatchMaker

User Publisher

Advertiser

Query

Clicks

Displayed
Ads

Bids

Raw Ads
ROI

Traffic

Shared
Revenue

Figure 1: Sponsored Search Marketplace

1 INTRODUCTION
Online advertising [10, 20] becomes very important as we spend
more time on internet based applications like search engines, so-
cial network web sites and video streaming services. Sponsored
search [3, 6] represents the largest share of the online advertis-
ing [20, 27] where relevant ads (advertisements) are shown to search
engine users while they’re looking for information. Due to high
profitability and user engagement, large companies like Microsoft,
Yahoo and Google make significant investments to optimize their
sponsored search marketplace.

Sponsored Search Marketplace has four major actors (Figure 1)
in most general form. Search engines like Bing performs match-
making role between user, advertiser and publisher. Matchmaker
is responsible for delivering relevant ads to the user through the
publisher as well as getting bid and raw ads data from advertiser. In
some cases, publisher and matchmaker can be same party like Bing.
While users interact with the publisher web site, the matchmaker
provides ads in back-end and shares the revenue with the publisher.
When users are exposed to relevant ads related to their intention,
click events lead to return of investment (ROI) for advertisers.

Optimizing Sponsored Search Marketplace is not an easy process
since each actor has their own goals and these goals may conflict
with each other. The goal of optimization process is to find an equi-
librium point which satisfies the constraints coming from all of the
parties. The most challenging part of the optimization process is the
predicting the Key Performance Indicator (KPI) impact of any new

https://doi.org/10.1145/3289600.3290969
https://doi.org/10.1145/3289600.3290969

modification to the system which is also knows as counterfactual
policy estimation problem [1, 16].

Counterfactual policy estimation problem attracted many re-
searcher recently within both organic and sponsored search prob-
lem context [2, 16, 22]. A/B testing [13, 15] is known to be most
reliable solution to this problem for large scale web applications
like sponsored search systems. In A/B testing, users are randomly
divided into treatment and control groups and receive ads from
two different systems. In this setup, control users receive ads from
unmodified application while treatment users receive ads from the
application where modification is applied. After that, KPIs from
control and treatment traffic slices are compared. While providing
very reliable KPI comparison, A/B testing is very difficult to use
for many use cases due to end to end deployment requirement and
traffic size limitations.

Existing observational approaches like Inverse Propensity Score
Weighting [2, 8, 12, 19] are another family of counterfactual esti-
mation methods that can be used to perform KPI prediction for
policy changes. The idea is to enable subset of real traffic with ran-
domized experiment that represents the modification to the system.
Once enough data from randomized traffic is observed with the
treatment modification, the offline exploration can be performed
on this data to find better operating points. The offline exploration
process consumes randomized input to KPI metrics mapping data
without running the whole system in open box manner (system
is tread as a closed box). While improving traffic limitations com-
pared to A/B testing, existing observational approaches need end
to end deployment and exploration in real traffic could be very
costly depending on the size of the exploration space. In addition,
observational approaches can show large regressions for the data
that has bias due to frequent policy updates.

In this paper, we propose a new counterfactual estimation frame-
work called Genie that addressesweak points of previous approaches.
Genie utilizes offline simulation engine that performs replaying past
event logs in an open boxmanner and compute KPIs via trained user
model from search logs. We claim that Genie has more knowledge
on inter dependencies of system layer that impacts the code path
from the point where modification applied till to get measurement
result. Therefore, replaying the historical data with proper model-
ing of system inputs (user and/or advertiser signals) becomes very
reliable and provide many advantages compared to A/B Testing
and existing observational approaches. Apart from KPI prediction
reliability, Genie can explore much wider parameter space since
it does not require real traffic with modification/exploration cost.
Genie can also be leveraged to tune completely new policies where
creating initial experiment is very costly due to cold start problem.

Due to its advantages, Genie has been one of the best policy
estimationmethods for optimizingmajority of use cases in Bing Ads
that includes adding new policies, large changes in existing policies
and any change that is difficult/risky to validate via real traffic. As
time of today, Genie hosts more than 10000 production optimization
jobs yearly for Bing Ads Sponsored Search Marketplace. To the best
of our knowledge, this paper is the first attempt that propose a log
replay based counterfactual estimation system under proper user
click behavior modeling. In particular, contributions of this paper
are given below:

• We modeled Sponsored Search optimization problem as a
causal inference problem to predict KPI outcome of any mod-
ification to the system. We propose a causal graph with sep-
arate input and system layers which can introduce different
types of bias in the training data.
• We showed that using log replay as an open box simulator
for the system layer of causal graph with the proper Machine
Learning modeling of input layer yields very reliable KPI
predictions.
• We also showed that Genie can easily be leveraged to tune
completely new policy which is one of most risky use cases
for optimizing sponsored search marketplace. We found that
KPIs for the best operating points discovered by Genie is
statically significant and correlated with KPIs from the real
traffic when modification is applied under A/B testing.

This paper is organized as follows: Section 2 discusses back-
ground and motivation for this work. The next section summarizes
the Related Work. Section 4 introduces the details of Genie coun-
terfactual estimator framework. After that, Section 5 presents our
experimental results. Finally, we give our conclusions in Section 6.

2 BACKGROUND AND MOTIVATION
In statistics, causal inference literature defines counterfactual as any
change to the system the impact of which is the focus of interest [1].
In the case of sponsored search, counterfactual could be any policy,
parameter or model change in the system that yields a different ad
allocation presented to the end user.

Similar to the other application contexts, counterfactual esti-
mation for the sponsored search optimization can be modeled as
a causal inference problem [16]. For large systems like Bing Ads,
the causal graph may contain large system layer with many active
policies depending on user and advertiser signals (Figure 2).

User

Advertiser

Click

Position

Revenue

Rank

Keyword

and Bid

P1

P
2

P
N

Ads

Layout

CPC

System

Input
Layer

Query

Impression

Genie performs
open box
simulation.

Genie runs
exactly same
binary that
online system
runs.

Genie learns
click behavior.

Genie runs ML
algorithms to
learn click
prediction
model.

Figure 2: Causal Graph for Sponsored Search

Our main motivation for pushing simulation based counterfac-
tual estimation system comes from the complexity of the causal
graph. At a given snapshot, Sponsored Search system may have N
active policies A = {P1, P2, . . . , PN } depending on system inputs.

Training Period Testing Period

A1 ={P1, P2.. Pk,…PN} A2 ={P1, P2.. P’k,…PN}

Pk ← P’k

T2 T3

A3 ={P1, P2.. P’k,…P’N}

PN ← P’N

T1

Figure 3: Example Tuning with Noise

For sophisticated systems like Bing Ads, there are frequent updates
on the set of active policies (in/out) for each deployment which
could potentially create a noise when historical data is used for
counterfactual estimation of future KPIs. Consider the tuning pro-
cess in Figure 3 that optimizes parameters of policy PN which is
the member of active policies A1 in the beginning of the training
period. Let say that there is another experiment enabled in all of the
traffic slices at timeT2 which updates the policy Pk and changes the
distribution of inputs that policy PN consumes. In this particular
case, the training time window is needed to be reset from T2 and
this period should be extended beyond T3 to include enough data
with the new distribution. However, this could not be practical in
many cases due to the frequency of updates and timing constraints.

Unlike existing observational approaches, our simulation based
counterfactual estimation can consume all of data for [T1, T3] time
period without resetting tuning process. We propose that KPI im-
pact of any policy can be estimated by replaying training data with
the modified policy and using user click behavior model that has
tolerable noise. In our policy estimation model, we keep logged
advertiser data and user queries fixed while updating click signal
based on new page allocation produced by running system layer
with new modifications. During the tuning process, the data se-
lection for input layer are randomized by using different seeds to
prevent bias due user and advertiser signals.

For the example scenario in Figure 3, if the simulation system has
an access to the logged system inputs (user and advertiser signals)
and implementation of policy change (usually weeks before creating
experiment) in the online binaries for Pk ′ , the training data can be
simulated with counterfactual policy setting of A

′

= {P1, P2, . . . ,
P
′

k , . . . , P
′

N } for the time period between T1 and T3.
Apart from supporting tuning scenarios on noisy data given in

Figure 3, our simulation platform has other advantages as follows:

• Genie could easily used for finding initial settings for ran-
domized experiments to minimize cost of cold start problem.
• Applying modification or randomizing system inputs are
not possible in certain cases (like bid of advertisers) due to
legal issues or traffic capacity. Genie could easily estimate
the impact of change in system inputs without real traffic.
• Randomized experiments could be very risky in certain cases
for new policy changes in terms of user experience. Ge-
nie could easily be used for estimating KPI Impact of these
changes before enabling in real traffic.

The reader should also be aware of that some scenarios are diffi-
cult to tune both with Genie and existing observational approaches.
A typical example is where tuning setup has significant deviations

from existing policies/models in real traffic. This type of modifica-
tions yield large change in feature distributions of click prediction
that Genie is using. For existing observational approaches, these
type of tunings require large exploration space which can signifi-
cantly regress the user experience. A hypothetical example of this
category is that if traffic slice is not tuned for a long time (on the
order of several months), there could be large change needed in
existing operating points of many policies since marketplace data
changed a lot.

3 RELATEDWORK
Counterfactual reasoning and estimation systems [2, 16, 23] an-
swer questions like "how would the system performance had been
changed if the modification had been applied to the system during
log collection?". The idea for these systems is to use online event
logs to train models and predict KPIs for new modifications.

A/B testing [14, 15] is a standard way of evaluating the modifi-
cations to the web based systems. In A/B testing setup, users are
randomly divided into control and treatment groups. Control group
is served by existing binary without any modification whereas
treatment group is served by the system where modification is
applied. Once enough data is collected from A/B test, control and
treatment metrics are compared to test the hypothesis that supports
modification to the system.

Observational approaches [1] like Inverse Propensity Weight
Estimation [2, 8, 12] were proposed as an alternative to the A/B
testing for counterfactual estimation of KPI metrics. Estimation
methods like Importance sampling [2] can be used in conjunction
with online randomization of tunable parameters. Once the logs
with randomized parameters are collected, offline exploration can
be used to estimate KPI metrics for the proposed parameter settings.
As mentioned in previous sections, observational approaches could
not be practical in some of tuning scenarios and online explorations
should be designed very carefully to minimize negative impact on
user experience. [21].

Our focus in this paper is to propose efficient counterfactual
estimator for practical tuning problems within the context of Spon-
sored Search System. In particular, we target on tuning scenarios
where A/B testing and existing observational approaches can not
work efficiently. We split the causal graph for the sponsored search
problem into input and system layer and apply different methodolo-
gies to predict outcomes. While machine learning methods gives
very good results for predicting user click behaviors [17, 18, 26],
we used log replay based open box simulator to estimate the
outcome of the system layer. The reader could think of applying
similar approaches for policy optimization problem when train-
ing data is very noisy due to frequent system changes or when
it is not practical to create online experiment with the proposed
modification.

4 GENIE COUNTERFACTUAL ESTIMATOR
Genie Counterfactual Estimator corresponds to training job called
Auction Simulation that is executed at Microsoft Cosmos Cloud [4].
Auction Simulation job takes many parameters for traffic slice filtra-
tion, click model features and user grid that contains counterfactual
parameters. Depending on the size of the hyperparameter space,

Auction Simulation job can be followed by grid exploration step to
improve the efficiency of solution search in hyperparameter space.
In the next section, we discuss details of Auction Simulation Job.
After that, Grid Exploration step is presented.

Step 1

Data wiring and
Integration

Step 2

Train Click
Calibration

Step 3

Run Auction Simulation

per Request

Step 4

Metric
Computation

Timeline

10%-20% 2%-10% 50% - 85% 10% - 25%

Figure 4: Phases of Auction Simulation Job

4.1 Auction Simulation Job
Auction Simulation Job runs Scope Script on Cosmos [4] to perform
the counterfactual estimations. Figure 4 presents stages of this job
including their relative minimum and maximum computation cost.
The details of each phase is discussed in the next subsections.

4.1.1 Data Wiring and Integration. The goal of Data Wiring
and Integration phase is the reconstructing online library inputs
from past event logs. This phase wires logged data from multiple
resources that contains ads, auction parameters and page layout
data. Then, all of data sources are integrated and transformed into
schemas that online library expects. The validation of logged data
is performed in this step too.

4.1.2 Train Click Prediction. This step is responsible for training
model that is used for click prediction. Click prediction is required
to re-estimate the click probability of ads in the new page allocation
returned from Auction Simulator when counterfactual modification
is applied.

Genie click prediction model uses set of N impression feature
vectors and click pairs D = {(x1,y1),...,(xk ,yk), ...,(xN ,yN)} where
∀yk ∈ {−1, 1} (1: click, -1: no click) as an input. The goal of the click
prediction step is to find mapping from each impression vector xk
to click probability ŷk where each ŷk ∈ [0, 1].

Due to high runtime performance and high prediction accu-
racy, majority of Genie estimation jobs are using online version of
Bayesian Probit [11] for the click prediction problem.

Bayesian Probit is a generalized linear model with the following
posterior distribution of y for given x and weight vector of w of
linear model.

p(y |x ,w) = Φ

(
y.wT .x

β

)
(1)

The probit function Φ(t) is the standardized cumulative Gauss-
ian density function that maps the output of the linear model in
[−∞,∞] to [0, 1] with β that represent steepness of probit function.

Φ(x) =
∫ x

−∞

N (x , 0, 1)dx =
∫ x

−∞

e−x
2/2

√
2π

dx (2)

In Bayesian Probit, each impression vector xi contains L fea-
tures. Each feature j corresponds toMj different discrete bins and
represented by a binary vector as below:

xi j =


xi j(1)
...

xi j(Mj)

 and
k=Mj∑
k=1

xi j(k) = 1 (3)

Since each feature j of xi corresponds toMj dimensional vector
of bins, xi is represented by

∑k=N
k=1 Mk dimensional sparse vector

as follows:

xi =


xi1(1)
...

xiL(ML)

 ,
j=L∑
j=1

k=Mj∑
k=1

xi j(k) = L (4)

The probit model stores as a vector of gaussian distributions for
each bin that represents the weights of generalized linear model as
follows:

w = (µ,σ), µ =


µ11
...

µL(ML)

 , σ2 =


σ 2

11
...

σ 2
L(ML)

 (5)

During the model training, each request data is converted to a
set of impression and click signal {-1,1} features on Cosmos. Each
impression vector and click signal pair is only scanned one time in
an online manner. During training data scan, the mean and variance
of Gaussian distributions for matched weight bins are updated via
backward message passing [11] to maximize the posterior probabil-
ity in Equation 1. Once the model is trained, the inferred model is
sent to downstream components of the scope script. For an eval-
uation of given feature vector x , the Probit model accumulates
variance and mean of those matched feature bins as follow:

σ 2 = xTσ2, µ = xT µ (6)

Then, predicted click probability is calculated as Φ (µ/
√
σ 2 + β2)

where Φ is the standardized cumulative Gaussian density function.
Apart from online Bayesian Probit, Genie also supports Click

Prediction model based on Gradient Tree Boosting [5]. Tree Boost-
ing is a state of art method that is widely used in many real world
applications including search result ranking and click through rate
prediction.

Tree Boosting model implemented in Genie works with both
continuous and categorical features. Therefore, it does not require
costly feature engineering process to create binned feature space
like in Bayesian Probit. Tree boosting model has L regression trees
and each tree Tk (k ≤ L) is traversed from top to down to find a
particular leaf node for a feature vector x via conditions on inter-
mediate nodes. The weight of discovered leafwk is used as a weight
for current treeTk . This process is repeated for all of the trees. After
that, a sigmoid function is applied to the sum of weights to create
final click prediction value between [0, 1] as below:

yi = σ (
k=N∑
k=1

wk), σ (x) =
1

1 + e−x
(7)

During the training phase, each request data is converted to a set
of features that is very similar to the one for Bayesian Probit. After
that, the training data is scanned L times in batch manner to train
tree ensemble. Inspired from Friedman et al. [7], the following log

loss objective function on prediction error is propagated in each
iteration t to create new trees:

Losst =
i=N∑
i=1

ψ (yi , ŷi
t) =

i=N∑
i=1

[
−yi log ŷi t − (1 − yi) log(1 − ŷi t)

]
(8)

ŷi
t = σ

(k=t∑
k=1

wk

)
(9)

While constructing the single tree in iteration t , the Equation 8-9
are used to produce target value for each data sample that corre-
sponds to the gradient of the error function given in Equation 10.

ȳi
t =

[
−
∂ψ (yi , ŷi

t−1)

∂ŷi
t−1

]
(10)

After that, the split gain function is derived from least squares
on target values to select feature with highest gain to create new
branches in current iteration. The split process is done iteratively
in greedy manner starting from feature that has highest split gain.

From the counterfactual policy estimation perspective, both
methods has different trade offs. While tree boosting eliminates the
process for costly feature engineering, it does not fit into traditional
Map Reduce paradigm well compared to Bayesian Probit since it
requires multiple disk read and write for each iteration. On the
other hand, we found that Tree Boosting yields models with higher
accuracy in most common tuning scenarios as mentioned in Ex-
perimental Results Section. As time of today, Genie counterfactual
estimator keep both methods and user config defines the one that
is going to be applied based on efficiency and quality trade offs.

4.1.3 Auction Simulation. This phase executes Bing Ads online
libraries with the modified version of the reconstructed inputs per
request. The offline replay process of the online binary with same
or modified inputs is called open box auction simulation.

The Auction Simulaton contains a wrapper layer which is re-
sponsible for reading all of the inputs and invoking the online
library. Simulation wrapper reads the counterfactual grid points,
click prediction model and auction data. Then, each counterfactual
grid point is converted into modifier method. The Modifier method
mutates the auction data in place and returns the restorer function
for auction data and object representation of the current grid point.
Once the online library is called with the mutated input, the page al-
location for the mutated input is generated. After that, click predict
model is applied to re-evaluate click probability of ads in the page
allocation. Finally, KPI metrics for current settings are computed
from updated page allocation. The pseudo code for the simulation
logic is given in Algorithm 1.

The key part of the Algorithm 1 is the simulation of the online
library (line 6) for running an auction. There are many ways to
design an online library that runs an auction [9, 24, 25] in real
time. Here we only discuss the general form described in Varian et
al [24] based on Generalized Second Price Auction. The subsequent
auction logic described in this paper is consistent with definitions
in Variant et al [24]. However, our framework can run with any
type of auction mechanism as long as the interface remains same.

Algorithm 1: Simulation Algorithm
Input: Auction Data: A, Grid: G, Click Model: C
Output: List of (Setting, KPI) pairs as KPIs

1 M ← G.GenerateModifiers(A)
2 KPIs ← { } // Initialize the output.
3 foreachMi ∈ M do
4 // Modify the input and get (restorer, setting)
5 (Ri , Si)←Mi .Modify(A)
6 Pi ← OnlineLibrary(A) // Create ith page allocation
7 C.Predict(Pi) // Adjust click probabilities
8 KPIi ← GetKPI(Pi)
9 KPIs ← KPIs ∪ (Si ,KPIi)

10 Ri .Restore(A) // Restore the input to original value
11 end

In general form, the auction system can get 3 sets of input data
from simulation wrapper. These inputs can contain basic ad data,
PClick scores and other ad specific metadata. In addition to data
inputs, auction layer can also get settings for different policies and
candidate page layouts to select. Following [2, 24], the rank score or
the utility of adi can depend on bid bi of current advertiser and ad
dependent click quality score qi . The utilityui of adi can be defined
as ui = biqi where qi contains click probability pi of current ad.
Once the utility computation for each ad is done, ads can be placed
on page layouts starting from most significant position to the least
significant in a greedy manner. For each available position in the
page layout, the winner ad and runnerup can be determined based
on their rank scores. The runnerup can be used for determining
pricing score for the current position which is required for calcu-
lating the cost per click (CPC) based on Generalized Second Price
Auction [24]. Finally, the page allocation with the maximum utility
can be selected as a best allocation.

4.1.4 KPI Computation. KPI computation phase computes met-
rics of interest for each counterfactual grid setting. Aggregated
metrics are used in decision process to update the operating points
of several policies in the real serving environment. In this phase,
metric data for each request and grid point pair are converted into
data cubes. Each data cube contains n dimensions with many dat-
acube cells. A data cube cell contains KPI metrics that is pivoted
by n dimensional key. Once the data cube for each request and
grid point is created, they are aggregated recursively with sum
operation over all requests to produce final metrics.

4.2 Grid Exploration
Some of the tuning scenarios need to explore very large hyper-
paremeter space that contains more than 15-20 policy parameters.
As a result, these tuning jobs requires significant amount of com-
puting resources to run simulation based approach. For an efficient
hyperparameter space search, the Grid Exploration step can be exe-
cuted between sequential tuning jobs. In this setup, grid exploration
step reads simulated data points from former job and recommend
better operating points for latter jobs based on the model trained
from simulated points of former job.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

100K 200K 400K 800K 1.6M 3.2M

C
u

m
u

la
ti

ve
 P

re
d

ic
ti

o
n

 E
rr

o
r

Data Size

Data Size vs Cumulative Prediction Error

Bayesian Probit Tree Boosting

Figure 5: Cumulative Prediction Error

0.288

0.29

0.292

0.294

0.296

100K 200K 400K 800K 1.6M 3.2M

N
o

rm
al

iz
ed

 L
o

g
Lo

ss
 E

ro
rr

Data Size

Data Size vs Log Loss Error

Bayesian Probit Tree Boosting

Figure 6: Log Loss Error

0

100

200

300

400

500

600

700

100K 200K 400K 800K 1.6M 3.2M 6.4M

R
u

n
ti

m
e

Pe
rf

o
rm

an
ce

(S

ec
o

n
d

s)

Number of Training Impressions

Bayesian Probit Tree Boosting

Figure 7: Runtime Comparision

In an nutshell, Grid Exploration step learns a regression model
that maps set of hyperparameters X to set of real valued KPI deltas
∆Y . KPI delta refers to normalized difference between KPI that is es-
timated by applying grid point (treatment) and KPI that is estimated
from logs without any modification (baseline). This step learns a
separate instance of regression model for each metric that tuning
user is interested. For simplicity we assume that each ∆yi ∈ ∆Y is
one dimensional real value and each xi ∈ X is a k dimensional vec-
tor. For a given data set D = {(x1,∆y1),...,(xk ,∆yk),...,(xN ,∆yN)}
the Grid Exploration step can learn two types of regression model.

In linear regression case, the least squares approach is used to
minimize the following sum which yields solution for coefficients
β = (β0, β1,...,βk):

Minβ


N∑
i=0

©­«∆yi −
k∑
j=1

βjxi j − β0
ª®¬

2 (11)

For the ridge regression, the extra term is added to the error
function to shrink the linear coeffients β with shrinkage factor λ to
avoid potential overfitting:

Minβ


N∑
i=0

©­«∆yi −
k∑
j=1

βjxi j − β0
ª®¬

2

+ λ
k∑
j=0

β2
j

 (12)

Once the model is trained, the iterative optimization algorithm
similar to hill climbing is executed with the user supplied parame-
ters. The details of the optimization process is given in Algorithm 2.
In each iteration, a temporary solution set is created by exploring
neighbours of the current solution set. The most common explo-
ration logic is selecting random values from [min,max] range of
random subset of each hyperparameter dimensions based on uni-
form distribution. Then, the best P (population size) solutions from
the union of current and previous step are chosen to finalize the
solution set in the current step. The iteration stops after certain
number of executions and top k solutions from the solution set are
selected as final result.

5 EXPERIMENTAL RESULTS
In this section, we provide our experimental results on Bing serving
traffic. We first present experimental results on the the quality and
efficiency of click prediction, auction simulation and grid explo-
ration steps. After that, we compare the counterfactual estimation
accuracy of Genie with an Importance Sampling based estimator
on one of most noisy and largest traffic group in Bing. Finally, we
present counterfactaul estimation accuracy results of Genie on one
of the most difficult use cases that requires tuning new policy.

Algorithm 2: Optimization Algorithm
Input: Hyperparameters: X , KPI deltas: ∆Y , Batches: B
Input: Population size P , Solution size: k , Objective: Fob j
Output: Best solution set: X ′ and ∆Y ′

1 Model = Train(X , Y)
2 X ′← X , ∆Y ′← ∆Y

3 for i ← 1 to B do
4 Xi ← Explore(X ′, P) // Create new solution set
5 ∆Yi ←Model.Predict(Xi)
6 // Select best P solution from current union previous.

∆Y ′, X ′← Select(X ′ ∪ Xi , ∆Yi ∪ ∆Y ′, P)
7 end
8 // Select the top k solution among ∆Y ′

9 (X ′, ∆Y ′)← Top(X ′, ∆Y ′, k , Fob j)

5.1 Click Prediction Performance
In the click prediction experiments, we used 10 million sample of
data that spans a week time period from Bing PC traffic of January
2018. For the experimental setup, the size of training data is gradu-
ally increased from 100K to 3.2M. In each data point, the subset of
data excluding the training set is used for testing.

Figure 5 presents the cumulative error for click prediction mod-
els with respect to Equation 13 where N is the number of test
impressions.

Ecumulative =

��∑N
i=1yi −

∑N
i=1ŷi

��∑N
i=1yi

(13)

For the cumulative error, we observed that Tree Boosting is
slightly better than Bayesian Probit when the data size is smaller
than 3M samples. Another observation is that when data size be-
comes larger than 3M samples, the error rate is getting stable and
converges for homogenous traffic like Bing PC. This behavior is
very similar to other homogenous traffic slices that are tuned by
Genie.

While the cumulative error gives general idea for click prediction
quality on the aggregated level, it does not reflect the success of
individual impression predictions. The normalized Log Loss error in
Equation 14 gives better estimation of impression level prediction
accuracy. In the second experiment, we compared the Log Loss
error of Bayesian Probit and Tree Boosting (Figure 6). We observe
that Tree Boosting is slightly better than Bayesian Probit in terms
of Log Loss Error. The convergence behavior is very similar to
cumulative prediction error after 3M samples.

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

Bing PC Bing Mobile Bing Tablet

Traffic Slice vs Simulation Quality

Simulation Accuracy Conversion Success

Figure 8: Simulation Quality

1

10

100

1000

10^0 10^1 10^2 10^3

En
d

 t
o

 E
n

d
 R

u
n

ti
m

e
(m

in
)

Number of Grid Points

E2E Runtime vs Number of Grid Points

Bing PC Bing Mobile Bing Tablet

Figure 9: Simulation Runtime

1

10

100

1000

10000

10^0 10^1 10^2 10^3

P
N

 H
o

u
rs

Number of Grid Points

PN Hours vs Number of Grid Points

Bing PC Bing Mobile Bing Tablet

Figure 10: Simulation PN Hours

0

0.004

0.008

0.012

RPM IY CY

R
M

SE

Metrics

Metrics vs RMSE of Models

Linear

Ridge

Figure 11: Model Accuracy

0

2

4

6

500 1000 5000

To
ta

l R
u

n
ti

m
e

(S
ec

o
n

d
s)

Sample size per Iteration

Runtime Performance of Grid Exploration

5 Iterations 10 Iterations 20 Iterations

50 Iterations 100 Iterations

Figure 12: Grid Exploration Performance

0

0.003

0.006

0.009

0.012

0.015

0 5 10 15Eu
cl

ed
ia

n
 D

si
ta

n
ce

 B
et

w
ee

n

It
er

at
io

n
s

Iterations

Optimal Point Convergence

Figure 13: Optimal Point Conversion

Eloдloss =
1
N

i=N∑
i=1

ψ (yi , ŷi) (14)

In the last experiment, we compare the runtime performance of
the model training part of Bayesian Probit and Tree Boosting. The
training part for the Bayesian Probit runs on cosmos and integrated
into Auction Simulation Job. The training job for Tree Boosting is
running in a single box on Microsoft Internal Workflow Platform
outside the Auction Simulation Job. Figure 7 presents the runtime
comparison of training jobs for these two models. We observe
that the training part of both model is very fast and have similar
performance. However, the current Tree Boosting implementation
is not compatible with Cosmos and running outside the cosmos data
cluster. Therefore, the significant amount of time (10 min - 2 hours)
is spent on transferring training data between data centers (Figure 7
excludes this data). Because of this, Tree Boosting is only preferred
for cases when significant feature engineering is involved (non
continuous features) or noisy traffic slices in terms of user behavior
and feature space (traffic types where Bing is not publisher).

5.2 Auction Simulation Experiments
In this part, we analyze the runtime performance and replay quality
of the Auction Simulation step. For the experimental purpose, we
use the 3 different data samples collected from Bing PC, BingMobile
and Bing Tablet traffic slices in January 2018.

In this experiment, we prepare 12 job configs for 3 traffic slices
with 4 different grid settings. The performance results only reflects
simulation phase of the auction simulation job that is executed on
Cosmos platform. The Auction Simulation component runs on 2000
processing node up to certain number of data samples cross the
number of input grid points. Once the number of input grid points
and data size increase, we gradually increase the number of pro-
cessing nodes based on heuristics which is calibrated periodically.
In the current experiment, we used 4 different grid size on expo-
nential scale from 100 to 103. The first 3 data points correspond to

simulation run with 2000 nodes and the grid size of 103 corresponds
to simulation run with 10000 processing nodes.

Figure 8 presents the simulation quality for this experiment. Sim-
ulation accuracy represents the percentage of requests that can
be replayed correctly in offline among converted logs. Conversion
success represents the percentage of requests which are logged
properly and can be converted into the data structure that online
library expects. As Figure 8 suggests that, both simulation accu-
racy and conversion success are constantly above 99% which is
needed for accurate counterfactual estimation. Figure 9 and Fig-
ure 10 present runtime performance metrics. As the number of grid
points increases, the runtime and PN hours increase too. Another
observation is that the tangent of end to end time is not sharp as
in total PN hours till some point (103). This implies that as long
as there is an available resource for parallelization, the end to end
runtime is less impacted compared to the total processing time.

5.3 Grid Exploration
For the grid exploration, we use one of the specific tuning scenario
for Bing PC slice with 2K grid points that spans a week of data in
Jan 2018. Through this section, Grid Exploration experiments run
in a single machine that has Intel i7 CPU with 4 cores and 32 GB
RAM.

In the first experiment, we compared the prediction accuracy
of Linear and Ridge regression. For both models, we tried 3 dif-
ferent versions that use linear, quadratic and cubical polynomial
feature space. Here, we don’t present higher polynomial feature
space than cubical since increasing the order of polynomial feature
space more causes over fitting and does not contribute prediction
accuracy significantly. For reporting purpose, we only compare
the most common metrics that are used for tuning decisions: Rev-
enue per mille (RPM), click yield (CY) and impression yield (IY).
Figure 11 presents the Root Mean Square Error (RMSE) comparison
of Ridge and Linear regression. In this experiment, we use 3-fold
cross validation where we randomly divide data into 3 subset and

2 subset is used for training and rest is used for prediction. Our
first finding is that Linear regression model yields better prediction
performance compared to Ridge regression. We also discovered that
cubical features yields best performance in majority of the tuning
scenarios.

In the second and third experiments, we analyze the performance
of the optimization algorithm mentioned in Section 4.2. Figure 12
presents the runtime performance with respect to the number of
solutions explored in each step and the number of maximum itera-
tions. As we increase the number of iterations and solution space,
the runtime increases linearly. In terms of number of solutions,
increasing the solution space in each iteration does not contribute
significantly after 5000 solutions. Another interesting results is that,
the grid exploration method with 5000 solution space converges
very quickly after 20 iterations (Figure 13). This is indeed a very
common behavior that we observed in thousands of tuning jobs
where grid size coming from Genie jobs are less than 5K .

5.4 Comparison of Policy Estimators
In this section, we compare counterfactual estimation performance
of Genie with Importance Sampling based estimator [2] which is
one of the most common observational approaches that is utilizing
inverse propensity weight estimation. Importance Sampling com-
putes any metric y based on given online distribution of system
parameters P(x) over sample of N data points as follows:

Y =

∫
x
yP(x) ≈

1
N

∑N

i=1
yi (15)

For the counterfactual distribution P∗(x) of online parameters,
the Counterfactual KPI Y ∗ can be estimated as follows where the
w(xi) corresponds to ratio of counterfactual distribution over pro-
posal distribution for current sample xi :

Y ∗ =

∫
x
y
P∗(x)

P(x)
P(x) ≈

1
N

∑N

i=1
P∗(xi)

P(xi)
yi =

1
N

∑N

i=1
w(xi)yi

(16)
Since Importance Sampling needs online randomization of tun-

able parameter set x under certain distribution of P(x), we choose
less risky tuning scenarios that is used for periodic tuning of exist-
ing model parameters. For comparison purpose, we choose 5 tuning
interval for the same problem between April and May 2018 for
Bing PC traffic slice. We also created randomized experiment with
Gaussian distribution on certain set of parameters that are used for
controlling the same model. After that, we tuned same parameter
set periodically 5 times via importance sampling on randomized
logs with a certain objective function and a set of k proposal distri-
butions PD = {P∗1 (x), P

∗
2 (x), . . . , P

∗
k (x)}. At the end of each tuning

period, the best solution from corresponding tuning jobs is applied
to treatment traffic underA/B experiment setup for certain amount
of testing time. For comparison purpose, we also estimated the
KPI impact of selected solutions (selected proposal distribution) for
each time interval by using Genie tunings on exactly same data.

Table 1 presents comparison of Genie Estimator with Importance
Sampling based Estimator. The first and second rows represent the
average error from tunings based on data collected from randomized
experiment during tuning interval. The error in this context is the

Table 1: Comparison with Importance Sampling

Method RPM MLIY CY CPC
IS (Historical) 1.27% 0.41% 0.39% 1.14%

Genie (Historical) 1.16% 0.32% 0.37% 0.93%
IS (Regression) 0.90% 0.36% 0.24% 0.98%

Genie (Regression) 0.88% 0.25% 0.27% 0.66%

distance between predicted KPI delta of kth interval and actual KPI
delta of (k+1)th interval that is computed from theA/B experiment.
The last two rows represent the average error from regression
tunings where we apply same counterfactual on control traffic of
A/B tests on each interval (predicted and actual KPIs belong to
same interval). Our first observation is that Genie outperforms
Importance Sampling estimator on the space (MLIY) and pricing
metrics (CPC) on noisy traffic slices since the system layer in causal
graph has significant impact on the outcome of these variables.
Another interesting observation is that both estimator performs
closer for Click Yield and RPM the outcome of which is significantly
impacted by user behaviors directly or indirectly. This behavior is
indeed pretty similar in many other tunings scenarios where we
observe that Genie is more successful on predicting metrics that
has more noise due to system related changes like frequent policy
updates. Our final observation is that both tunings give better result
if they use the same control data for tuning with A/B testing time
period which are listed as regression tunings in Table 1.

5.5 Tuning New Policies with Genie
In this section, we present experimental results on tuning new
policies with Genie for Bing PC traffic. Tuning new policies is
the most risky tuning scenarios since there may not be enough
knowledge on hyperparameter space. Thus, creating A/B testing
or randomized experiment could be very costly due to cold start
problem.

For this particular experiment, we used periodic combo tuning
scenario where parameters that control new models from multiple
teams are tuned jointly to achieve global optimization goals. To find
the best operating point for this tuning task, Genie user submitted
more than 6 jobs. After tunings, user published the best operating
point and created two online experiment for A/B testing which
are randomly sampled versions of the current production Bing PC
traffic slice. Then, the first experimental slice is updated to the
new operating point by applying optimal parameter settings as a
treatment and the second clone is kept as a control slice for A/B
testing comparison.

For KPI validation purpose, we also submit Genie job on control
traffic of A/B test by applying same treatment in simulation for
comparison purpose. The results of current experiments are given in
Table 2 for RPM (Revenue Per Mille), CY (Click Yield), MLIY (Main
Line Impression Yield). Our first observation is that Genie results are
consistent with real traffic and metrics of interests are directionally
correct. Our second observation is that results are getting better
when data for real traffic and logs of Genie job are similar and
sampled from same dates (row 1 and row 2 in Table 2). When we
shift temporal dimension to the past, we started to observe more

Table 2: End to End Tuning Experiments

Job Dates ∆RPM ∆CY ∆MLIY
Real Delta 01/31-02/02 +1.60% +0.14% +4.74%

Genie Tuning 01/31-02/02 +1.73% +0.07% +5.13%
Genie Tuning 01/24-01/30 +1.81% +0.04% +5.33%

discrepancy (delta of row 1 and row 3) since user and advertiser
behaviors are getting different as training data gets older compared
to A/B testing time frame.

6 CONCLUSION REMARKS
In this paper, we propose an offline counterfactual policy estimation
framework called Genie to optimize the Sponsored Search market-
place. From the experimental results on Bing traffic, we show that
Genie can be used to tune completely new policy changes or param-
eters of existing policies for noisy traffic slices. We also discovered
that Genie can yield better results compared to exsiting observa-
tional approaches for metrics the outcome of which depend more
on policy changes. For metrics the outcome of which depends on
user behavior, Genie can also produce similar KPI results compared
to observational approaches like Importance Sampling. Thus, sys-
tem simulation + user modeling mechanism that Genie is utilizing
could be applied to similar problem contexts where training data
has bias due to frequent policy updates.

ACKNOWLEDGMENTS
The authors would like thank Emre Kiciman for feedbacks on im-
proving the content of this paper, TianjiWang andQian Yao for their
help on running Policy Estimators comparision experiments. Finally,
authors would like to thank Rukmini Iyer, Eren Manavoglu, Patrick
Jordan, Manish Agrawal, Patryk Zaryjewski, Anton Schwaighofer,
Sendill Arunachalam, Pei Jiang, Suyesh Tiwari, Lohith Shesharam,
Ranjita Naik, Marcin Machura, Urun Dogan, Elon Portugaly, Jiten-
dra Ajmera, Aniruddha Gupta, Dilan Gorur, Debabrata Sengupta,
Eugene Larchyk, Tommy Tan, Xiaoliang Ling, Thomas Borchert,
many talented scientists and engineers in Microsoft Bing Ads Team
for their help on Genie implementation and feedbacks for many
features of Genie.

The auction described in the paper is for illustration only and it
is not necessarily the one that Bing uses.

REFERENCES
[1] Susan Athey. 2015. Machine learning and causal inference for policy evaluation.

In Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, 5–6.

[2] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max
Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013.
Counterfactual reasoning and learning systems: The example of computational
advertising. The Journal of Machine Learning Research 14, 1 (2013), 3207–3260.

[3] Andrei Broder, Peter Ciccolo, Evgeniy Gabrilovich, Vanja Josifovski, Donald
Metzler, Lance Riedel, and Jeffrey Yuan. 2009. Online expansion of rare queries
for sponsored search. In Proceedings of the 18th international conference on World
wide web. ACM, 511–520.

[4] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel processing of
massive data sets. Proceedings of the VLDB Endowment 1, 2 (2008), 1265–1276.

[5] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785–794.

[6] Daniel C Fain and Jan O Pedersen. 2006. Sponsored search: A brief history.
Bulletin of the Association for Information Science and Technology 32, 2 (2006),
12–13.

[7] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[8] Peter W Glynn and Donald L Iglehart. 1989. Importance sampling for stochastic
simulations. Management Science 35, 11 (1989), 1367–1392.

[9] Gagan Goel, Vahab Mirrokni, and Renato Paes Leme. 2015. Polyhedral clinching
auctions and the adwords polytope. Journal of the ACM (JACM) 62, 3 (2015), 18.

[10] Avi Goldfarb. 2014. What is different about online advertising? Review of
Industrial Organization 44, 2 (2014), 115–129.

[11] Thore Graepel, Joaquin Q Candela, Thomas Borchert, and Ralf Herbrich. 2010.
Web-scale bayesian click-through rate prediction for sponsored search adver-
tising in microsoft’s bing search engine. In Proceedings of the 27th international
conference on machine learning (ICML-10). 13–20.

[12] Keisuke Hirano and Guido W Imbens. 2001. Estimation of causal effects using
propensity score weighting: An application to data on right heart catheterization.
Health Services and Outcomes research methodology 2, 3-4 (2001), 259–278.

[13] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann.
2013. Online controlled experiments at large scale. In The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013,
Chicago, IL, USA, August 11-14, 2013. 1168–1176. https://doi.org/10.1145/2487575.
2488217

[14] Ron Kohavi, Randal M Henne, and Dan Sommerfield. 2007. Practical guide to
controlled experiments on the web: listen to your customers not to the hippo.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 959–967.

[15] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M Henne. 2009.
Controlled experiments on the web: survey and practical guide. Data mining and
knowledge discovery 18, 1 (2009), 140–181.

[16] Lihong Li, Shunbao Chen, Jim Kleban, and Ankur Gupta. 2015. Counterfactual
estimation and optimization of click metrics in search engines: A case study.
In Proceedings of the 24th International Conference on World Wide Web. ACM,
929–934.

[17] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.
Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
1222–1230.

[18] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. ACM, 521–530.

[19] Nir Rosenfeld, Yishay Mansour, and Elad Yom-Tov. 2017. Predicting Counterfac-
tuals from Large Historical Data and Small Randomized Trials. In Proceedings of
the 26th International Conference on World Wide Web Companion, Perth, Australia,
April 3-7, 2017. 602–609. https://doi.org/10.1145/3041021.3054190

[20] Amin Sayedi, Kinshuk Jerath, and Kannan Srinivasan. 2014. Competitive poach-
ing in sponsored search advertising and its strategic impact on traditional adver-
tising. Marketing Science 33, 4 (2014), 586–608.

[21] Tobias Schnabel, Paul N. Bennett, Susan T. Dumais, and Thorsten Joachims. 2018.
Short-Term Satisfaction and Long-Term Coverage: Understanding How Users
Tolerate Algorithmic Exploration. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA,
USA, February 5-9, 2018. 513–521. https://doi.org/10.1145/3159652.3159700

[22] Adith Swaminathan and Thorsten Joachims. 2015. Batch learning from logged
bandit feedback through counterfactual risk minimization. Journal of Ma-
chine Learning Research 16 (2015), 1731–1755. http://dl.acm.org/citation.cfm?id=
2886805

[23] Adith Swaminathan and Thorsten Joachims. 2015. The self-normalized estimator
for counterfactual learning. In Advances in Neural Information Processing Systems.
3231–3239.

[24] Hal R Varian. 2007. Position auctions. international Journal of industrial Organi-
zation 25, 6 (2007), 1163–1178.

[25] Hal R Varian and Christopher Harris. 2014. The VCG auction in theory and
practice. American Economic Review 104, 5 (2014), 442–45.

[26] Wanhong Xu, Eren Manavoglu, and Erick Cantú-Paz. 2010. Temporal click
model for sponsored search. In Proceeding of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2010,
Geneva, Switzerland, July 19-23, 2010. 106–113. https://doi.org/10.1145/1835449.
1835470

[27] Weinan Zhang, Shuai Yuan, and Jun Wang. 2014. Optimal real-time bidding
for display advertising. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 1077–1086.

https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/3041021.3054190
https://doi.org/10.1145/3159652.3159700
http://dl.acm.org/citation.cfm?id=2886805
http://dl.acm.org/citation.cfm?id=2886805
https://doi.org/10.1145/1835449.1835470
https://doi.org/10.1145/1835449.1835470

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 Genie Counterfactual Estimator
	4.1 Auction Simulation Job
	4.2 Grid Exploration

	5 Experimental Results
	5.1 Click Prediction Performance
	5.2 Auction Simulation Experiments
	5.3 Grid Exploration
	5.4 Comparison of Policy Estimators
	5.5 Tuning New Policies with Genie

	6 Conclusion Remarks
	Acknowledgments
	References

